$$\frac{\text{Index of Coregularity 0 log Calabi-Yau Pairs}}{\text{Index of Coregularity 0 log Calabi-Yau pair}} (Filipozzi-Mauri-Moraga)} \\ \text{Notations. A generalized log Calabi-Yau pair} (X, B, M) (g-log CY pair)} (X, B, M) has generalized le singularities.
(X, B, M) has generalized le singularities.
(X, B, M) has generalized le singularities.
(X, B + B + MX ~ B 0)
Weil index of (X, B, M) = min { $\lambda \in \mathbb{Z}_{+}: \lambda (K_X + B + M_X) \text{ is integral }} (Courtier) index of (X, B, M) = min { $\lambda \in \mathbb{Z}_{+}: \lambda (K_X + B + M_X) \text{ is integral }} (Courtier) index of (X, B, M) = min { $\lambda \in \mathbb{Z}_{+}: \lambda (K_X + B + M_X) \text{ is Cartier }}.$

$$\frac{\text{Index Conj.}}{\text{Fix n and a DCC set I \subseteq \mathbb{Q}_{+} \cap [0,1]} \text{ Then I N = N(n,I) s.t.} \text{ for any log CY pair} (X, B) satisfying dim X=n, Coeff (B) $\subseteq I$, we have N(KX + B) ~ 0.

$$\frac{\text{Known results:}}{\text{For n=2, I = } 1 - \frac{1}{m} \text{ }, \text{ one can take N=66. (Mukai, Ishii, '90e)} \text{ The bound N=66 sharp (Kondo '92).}}$$$$$$$$

. Not known for n≥4. (in general).

Then A Let (X, B, M) be a proj g by cY pair of coreg 0 and Weil index
$$\lambda$$
.
Then $\lambda^{2}(K_{X}+B+M_{X}) \sim 0$, where $\lambda^{2} = lcm(\lambda, 2)$.
Cor Let (X, B) be a proj log CY pair of coreg 0 with $B=B^{-1}$.
Then $2(K_{X}+B) \sim 0$.
But Same vecult holds for slc log CY pairs
or for case ceeff(B) $\geq \frac{1}{2}$.
Then $E(X, B)$ be a proj dlt log CY pair of coreg 0, dim n. $B=B^{-1}$.
Then $H_{sing}^{s-1}(\mathfrak{D}(X, B); \mathfrak{C}) \simeq H^{0}(X, K_{X}+B)$.
(1) $K_{X}+B \sim 0$ iff $\mathfrak{D}(X, B)$ is "orientable".
(2) If $\mathfrak{D}(X, B)$ is not orientable, then I quasi-state double cover $(X, B) \rightarrow (X, B)$
such that $\mathfrak{D}(X, B)$ is orientable and $\mathfrak{D}(X, B) \cong \mathfrak{D}(\overline{X}, \overline{B})/(\mathbb{Z}/2)$.
Example Let (X, B) be a dtt log CY surface with $B = C+D$, $C\cap D = \frac{1}{2}$?
Then by adjustion,
 $\circ \sim_{0}(K_{X}+B)|_{C} = K_{C} + D|_{C} + Diff_{C}(0)$.
 $= K_{C} + \frac{1}{2} + \sum_{i=1}^{\infty} (1-\frac{1}{m_{i}})p_{i}$. $m_{i} = order of quatient $X = 0 = 2q(C) - 2 + 1 + \sum_{i} (1-\frac{1}{m_{i}})$
 $\Rightarrow q(C) = 0, \quad Y=2, \quad m_{1} = m_{2} = 2$.
Note: $K_{X}+B$ has index 1, but $(K_{X}+B)|_{C}$ has index 2.$

Properties of indices and corregs.
(X, B, M) g-log CY poir of coreg 0.
1. (invariance under crepant transformations)
Suppose (X, B, M), (X², B², M²) are crepant birl, then they have the same
index and coreg.
2. (invariance under adjunction).
Let
$$\lambda = \text{Weil}$$
 index of (X, B, M). $S = (\text{normalized})$ prime comp of $B^{=1}$.
Ks + Bs + Ns $\sim_{\mathbb{Q}}$ (Kx + B + Mx) ls.
Then (S, Bs, N) is g-log CY pair of coreg 0 and its Weil index divides $\lambda' - \text{lom}(\lambda, 2)$.
3. Suppose Mx is \mathbb{Q} -Cart. and $\equiv 0$, let $c = b$ -Weil index of Mx
Then $cM \sim 0$ as b-divisors.
4. Correg is preserved under finite quot:
Strategy of Pf of Thm A.
By Property 1, Can assume (X, B, M) is \mathbb{Q} -fact-gdlt.
Case 1: $B^{<1} + Mx \equiv 0$.
 $\Rightarrow B^{<2} = 0$, $MX = 0$. (Property 3)
 $\lambda \cdot Mx \sim 0$.
This reduces to the case of a pair (X, B - B⁼¹). (exactly Cor.)
Case 2: $B^{<1} + Mx \equiv 0$. $\Rightarrow Kx + B^{=1}$ is not pself.
Run

Strategy of Pf of the A:
By Property 1, Can assume
$$(X, B, M)$$
 is Q-fact-gdlt.
Case I: $B^{<1} + M_X = 0$.
 $\Rightarrow B^{<1} = 0$, $M_X = 0$. $\stackrel{(Property 3)}{\Rightarrow} \lambda \cdot M_X \sim 0$.
This reduces to the case of a pair $(X, B = B^{=1})$. (oracley Cor).
Case 2: $B^{<1} + M_X \equiv 0$. $\Rightarrow K_X + B^{=1}$ is not pself.
Run $(K_X + B^{=1}) - MMP$ to get MFS g: $Y \rightarrow Z$.
By Property 1, can reduce to $\lambda^2 (K_Y + B_Y + M_Y) \sim 0$.
Pack $S \subseteq B_Y^{=1}$ and by adjunction
 $K_S + B_S + N_S \sim_{\mathfrak{S}} (K_Y + B_Y + M_Y) \int_{S}$. (use Property 2)
 $\lambda^2 (K_S + B_S + N_S)$ is integral, Q-trivial $\overset{g}{=} \frac{M}{2} \frac{M}{2} \frac{M}{2} - 0$.
Finally, use KV vanishing to left the trivializing section on S back to
a trivializing "section on Y.
Park Coreg 0: Z cannot be higher dom. (blc all the $B^{=1}$ would dominate Z).

X ---> Z MPC fibration.

Fibers oure RC.

 $\frac{Claim}{H^{n-1}(B, \mathcal{O}_B)} \cong H^{n-1}(\mathfrak{Q}(X, B); \mathbb{C}).$

Sketch pf of claim: (Kollar)

$$B = B_{1} + \cdots + B_{r}$$

$$0 \longrightarrow \mathcal{O}_{B} \longrightarrow \sum_{i} \mathcal{O}_{B_{i}} \longrightarrow \sum_{i \neq j} \mathcal{O}_{B_{i}} n_{B_{j}} \cdots \sum_{i \neq j \neq k} \mathcal{O}_{B_{i}} n_{B_{j}} m_{B_{j}} \cdots \sum_{i \neq j \neq k} \mathcal{O}_{B_{i}} n_{B_{j}} m_{B_{j}} \cdots \sum_{i \neq j \neq k} \mathcal{O}_{B_{i}} n_{B_{j}} m_{B_{j}} \cdots \sum_{i \neq j \neq k} \mathcal{O}_{B_{j}} n_{B_{j}} m_{B_{j}} m_{B_$$

Now we know

$$H^{n-1}(\mathcal{D}(X,B);\mathbb{C}) \cong H^{0}(X, K_{X}+B).$$
Thus, $\mathcal{D}(X,B)$ is orientable

$$\iff H^{0}(X, K_{X}+B) \cong \mathbb{C}.$$

$$\iff K_{X}+B \sim 0.$$
I.
Suppose index of K_{X}+B is m.
Let $q: (Y, B_{Y}) \rightarrow (X,B)$ be index 1 over.
Then q is quasi-étale and deg $m.$ (Y, B_{Y}) dit log CY of coneg 0.
Galoris group Z/m acts on $\mathcal{D}(Y, B_{Y})$ and $K_{Y}+B_{Y} \sim 0.$
 $\mathcal{D}(Y, B_{Y}) / (Z/m) \cong \mathcal{D}(X,B).$
By Frep., $H^{n-1}(\mathcal{D}(Y, B_{Y}); \mathbb{Q}) \cong \mathbb{Q}$
 $H^{n-1}(\mathcal{D}(X,B); \mathbb{Q}) = 0.$
But $H^{n-1}(\mathcal{D}(X,B); \mathbb{Q}) \cong H^{n-1}(\mathcal{D}(Y, B_{Y}); \mathbb{Q}) \cong \mathbb{Q}.$
 $\Rightarrow Z/m$ acts nontrivially on $H^{n-1}(\mathcal{D}(Y, B_{Y}); \mathbb{Q}) \cong \mathbb{Q}.$
 $\Rightarrow Z/m$ acts at ± 1 on $\mathbb{Q}.$

Consider
$$(\hat{X}, \tilde{B})$$
 be the quot. of $(\hat{Y}, B_{\tilde{Y}})$ by $\mathbb{Z}/\frac{m}{2}$
 $(\hat{Y}, B_{\tilde{Y}}) \stackrel{\underline{M}_{-1}}{=} (\hat{X}, \tilde{B}) \stackrel{2:1}{=} (\hat{X}, B)$
 $\mathfrak{D}(\hat{Y}, B_{\tilde{Y}}) \stackrel{\underline{M}_{-1}}{=} \mathfrak{D}(\hat{X}, \tilde{B}) \stackrel{2:1}{=} \mathfrak{D}(\hat{X}, B)$
(Property 4.) (\hat{X}, \tilde{B}) is a det log $(\hat{Y} \text{ pair of correg } 0.$
such that $\mathfrak{D}(\hat{X}, \tilde{B})$ is orientable.
 $(H^{n-1}(\mathfrak{D}(\hat{X}, \tilde{B}); \mathfrak{D}) = H^{n-1}(\mathfrak{D}(\hat{Y}, B_{\tilde{Y}}); \mathfrak{D})^{\mathbb{Z}/\frac{m}{2}} = \mathfrak{Q})$
ind $\mathfrak{D}(\hat{X}, \tilde{B})/(\mathbb{Z}/2) \cong \mathfrak{D}(\hat{X}, B).$
We also get $k_{\hat{X}} + \tilde{B} = \operatorname{div}(\hat{f}).$
Then $\operatorname{tr}(\hat{f}) \in \mathcal{O}_{X}$ is a trivializing section of
 $\operatorname{tr}(k_{\hat{X}} + \tilde{B}) = 2(k_{X} + B).$
 $\Longrightarrow 2(k_{X} + B) \sim 0$. Hence $m - 2$.