Index of Coregularity $0 \log$ Calabi-Yan Pairs (Filipazzi-Mauri-Moraga)
Notations. A generalized \log Calabi-Yau pair $(X, B, M): \quad(g-\log C Y$ pair $)$ (X, B, M) has generalized l_{c} singularities.

$$
\text { - } K_{X}+B+M_{X} \sim_{\mathbb{Q}} 0
$$

Wei index of $(X, B, M)=\min \left\{\lambda \in \mathbb{Z}^{*}: \lambda\left(K_{x}+B+M_{x}\right)\right.$ is integral $\}$
(Cartier) index of $(X, B, M)=\min \left\{\lambda \in \mathbb{Z}_{+}: \lambda\left(K_{x}+B+M_{X}\right)\right.$ is Cartier $\}$.
Index Conj:
Fix n and a $D C C$ set $I \subseteq \mathbb{Q}+\cap[0,1]$. Then $\exists N=N(n, I)$ st. for any $\log C Y$ pair (X, B) satisfying $\operatorname{dim} X=n$, coif $(B) \subseteq I$,
we have $N(K x+B) \sim 0$.
Known results:

- For $n=2, I=\left\{1-\frac{1}{m}\right\}$, one can take $N=66$. (Mukai, Ishii,... 19os).

The bound $N=66$ sharp (Kondo ' q_{2}).
For canonical cY 3 -fold X : Kawamata-Morison ' 86.
For $l c \quad c Y 3$-fold : C. Jiang ('20). Y. $X_{k}\left({ }^{\prime} 20\right)$.

- Not known for $n \geqslant 4$. (in general).

Observations: numerical invariants suet as lat and index should only depend on coregularity, but not on dim.

Def For a dit pair (X, B), dual complex $D(X, B)$ is constructed:

$$
B^{\prime \prime}=B_{1}+\cdots+B_{r} \quad(S N C) .
$$

Vertices in $D(x, B) \longleftrightarrow$ Divisors B_{i}.
k-dim simplices \longleftrightarrow Components of $B_{j o} \cap \ldots \cap B_{j k}$
Gluing \longleftrightarrow Inclusions.
PL-homeo class of polyhedral complexes.
For a glee pair (X, B, M), define $\Theta(X, B, M)$ to be (an equiv class of)
$D\left(Y, B_{Y}+M_{Y}\right)$, where $\left(Y, B_{Y}, M\right)$ is a gait modification of (X, B, M).
The coregularity of $(X, B, M):=\operatorname{dim} X-1-\operatorname{dim} D(X, B, M)$
In particular. corey $0 \Leftrightarrow \exists 0$-dim glee center
\Leftrightarrow Some strata of B_{Y}^{-1} is a point.

Thm A Let (X, B, M) be a proj g - $\log C Y$ pair of corey O and Weil index λ.
(FMM) Then $\lambda^{\prime}\left(K_{x}+B+M_{x}\right) \sim 0$, where $\lambda^{\prime}=\operatorname{lcm}(\lambda, 2)$.
$=$ explain where this 2 cones from.
Cor Let (X, B) be a prog $\log C Y$ pair of cored o with $B=B=1$.
Then $2(k x+B) \sim 0$.
Rok Same result holds for sec $\log C Y$ pairs
or for case corf $(B) \geqslant \frac{1}{2}$.
Thm B Let (X, B) be a prof $d t+\log C Y$ pair of cored $0, \operatorname{dim} n, B=B^{=1}$.
(FMM) Then $H_{\text {sing }}^{n-1}(D(X, B) ; \mathbb{C}) \cong H^{\circ}\left(X, K_{X}+B\right)$.
(1) $K x+B \sim 0$ iff $D(x, B)$ is "orientate".
(2) If $D(X, B)$ is not orientate, then \exists quasi-étale double cover $(\widetilde{X}, \tilde{B}) \rightarrow(X, B)$ such that $D(\tilde{X}, \tilde{B})$ is rentable and $D(X, B) \cong D(\tilde{X}, \tilde{B}) /(\mathbb{Z} / 2)$.

Example Let (X, B) be a dIt $\log C$) surface with $B=C+D, C \cap D=\{q\}$.

Then by adjunction,

$$
\begin{aligned}
&\left.0 \tilde{Q}_{Q}\left(K_{x}+B\right)\right|_{c}=K_{c}+D k_{c}+D_{i} f_{c}(0) . \\
&=K_{c}+q+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right) p_{i} . \quad m_{i}=\text { order of quolicient } \\
& \Rightarrow 0=2 g(c)-2+1+\sum_{i}\left(1-\frac{1}{m_{i}}\right) \\
& \Rightarrow g(C)=0, r=2, m_{1}=m_{2}=2 .
\end{aligned}
$$

Note: $K_{x}+B$ has index 1, but $\left.\left(K_{x}+B\right)\right|_{c}$ has index 2 .

Properties of indices and cores.
$(X, B, M) g-\log C Y$ pair of oreg 0 .

1. (invariance under crepant transformations)

Suppose $(X, B, M),\left(X^{\prime}, B^{\prime}, M^{\prime}\right)$ are crepant birl, then they have the same index and corey.
2. (invariance under adjunction)

Let $\lambda=$ Wei index of $(X, B, M) . S=($ normalized $)$ prime comp. of $B^{=1}$.

$$
K_{s}+B_{s}+\left.N_{s} \sim_{\mathbb{Q}}\left(K_{x}+B+M_{x}\right)\right|_{s}
$$

Then $\left(S, B_{S}, N\right)$ is $g-\log C Y$ pair of coreg 0 and its Weil index divides $\lambda^{\prime}=\operatorname{lcm}(\lambda, 2)$.
3. Suppose M_{X} is \mathbb{Q}-Cart. and $\equiv 0$, let $c=b$-Wei index of M_{X}

Then $c M \sim 0$ as b-divisors.
4. Corey is preserved under finite quot.

Strategy of PF of The A.
By Property 1, can assume (X, B, M) is \mathbb{Q}-fact gait.
Case 1: $B^{<1}+M_{x} \equiv 0$.

$$
\Rightarrow B^{\prime \prime}=0, M_{x} \equiv 0 \stackrel{(\text { Property 3) }}{\Rightarrow} \lambda \cdot M_{x} \sim 0
$$

This reduces to the case of a pair $\left(X, B=B^{=1}\right)$. (exactly Cor).
Case 2: $B^{<1}+M x \neq 0 . \Rightarrow K_{x}+B^{=1}$ is not pref.
Run

Strategy of Pf of The A.
By Property 1, can assume (X, B, M) is \mathbb{Q}-fact got.
Case 1: $\quad B^{<1}+M_{x} \equiv 0$.

$$
\Rightarrow B^{\prime \prime}=0, M_{x} \equiv 0 \stackrel{(\text { Property 3) }}{\Rightarrow} \lambda \cdot M_{x} \sim 0
$$

This reduces to the case of a pair $\left(X, B=B^{=1}\right)$. (exactly Cor).
Case 2: $B^{<1}+M_{x} \neq 0 . \Rightarrow K_{x}+B^{=1}$ is not pref.
$\operatorname{Run}\left(K_{x}+B^{=1}\right)-M M P$ to get MFS $g: Y \rightarrow Z$.
By Property 1, can reduce to $\lambda^{\prime}\left(K_{Y}+B_{Y}+M_{Y}\right) \sim 0$.
Pick $S \subseteq B_{Y}=1$. and by adjunction

$$
\begin{array}{cc}
K_{S}+B_{S}+\left.N_{S} \sim_{\mathbb{Q}}\left(K_{Y}+B_{Y}+M_{Y}\right)\right|_{s} . & \quad \text { (use Property 2) } \\
\lambda^{\prime}\left(K_{S}+B_{S}+N_{S}\right) \text { is integral }, \mathbb{Q}-\text { trivial } \xrightarrow{b_{y} \text { induction }} \lambda^{\prime}\left(K_{S}+B_{S}+N_{S}\right) \sim 0 .
\end{array}
$$

Finally, use KV vanishing to lift the trivializing section on S back to a trivializing -section on Y.

Run Corey 0: Z cannot be higher dim. (B/c all the $B^{=1}$ would dominate Z).
$x \longrightarrow z \quad M R C$ filtration.
Fibers are RC.

Orientabilizy of dual complex.
Fact: $\Theta(X, B)$ is a $(n-1)$-dim psendo-manifold (up to PL -homeomorphism), i.e., a polyhedral complex which is
pure-dim of $\operatorname{dim} n-1$
. no branches

- connected.

Non-examples of ps-mflds:

Def / Lemma Let T be a ps-mfld of $\operatorname{dim} n$.
Then $H^{n}(T ; \mathbb{Z})=\mathbb{Z}$ or 0 .
We say T is ovientable if $H^{n}(T ; \mathbb{Z})=\mathbb{Z}$.
Prop. Let (x, B) prof dit pair of core 0 and $B=\beta^{=1}$.
Then $D(x, B)$ is orientafle $\Leftrightarrow K x+B \sim 0$.
Sketch $\operatorname{dim} X=n$. Consider

$$
\rightarrow H^{n-1}\left(X, \theta_{X}\right)^{=0} \rightarrow H^{n-1}\left(B, \theta_{B}\right) \rightarrow H^{n}\left(X, \theta_{X}(-B)\right) \rightarrow H^{n}\left(X, \theta_{x}\right) \rightarrow \ldots
$$

(X, B) has cone $0 \Rightarrow X$ is rationally connected (Molar - $X_{u} \prime 16$).

$$
\Rightarrow H^{i}\left(X, \theta_{x}\right)=0, \forall i>0 \quad\left(K M M \quad q_{2}\right) .
$$

Thus, $H^{n-1}\left(B, O_{B}\right) \cong H^{n}\left(x, O_{x}(-B)\right) \cong H^{0}\left(x, K_{x}+B\right)$.

Claim: (Friedman-Morison'83).

$$
H^{n-1}\left(B, O_{B}\right) \cong H^{n-1}(D(X, B) ; \mathbb{C}) .
$$

Sketch pf of claim: (Kollar)

$$
\begin{aligned}
B & =B_{1}+\cdots+B_{r} \\
0 & \rightarrow O_{B} \rightarrow \sum_{i} \theta_{B_{i}} \rightarrow \sum_{i<j} \theta_{B_{i} \cap B_{j}} \rightarrow \sum_{i<j<k} \theta_{B_{i} \cap B_{j} \cap B_{k}} \rightarrow \cdots
\end{aligned}
$$

This gives a spectral seq:

$$
\sum_{|J|=q} H^{p}\left(B_{J}, \theta_{B J}\right) \Longrightarrow H^{p+q}\left(B, \theta_{B}\right) . \quad \begin{aligned}
& J \subseteq\{1, \cdots, r\}, \\
& B_{J}=\bigcap_{j \in J} B_{j}
\end{aligned}
$$

Since $\left(B_{J},\left.\left(B-\sum_{j \in J} B_{j}\right)\right|_{B_{J}}\right)$ has oreg 0 ,
B_{J} is $R C \Rightarrow H^{i}\left(B_{J}, \theta_{B_{J}}\right)=0 \quad \forall i>0$.
Thus. spectral seq concentrated along $p=0$, so it degenerates after the next page.
$\Rightarrow H^{*}\left(B, \theta_{B}\right)$ is the cohomology of $p=0$ line:

$$
\begin{aligned}
\cdots & \rightarrow \sum_{|J|=p} H^{0}\left(B_{J}, \theta_{B J}\right) \rightarrow \sum_{|J|=p+1} H^{0}\left(B_{J}, \theta_{B J}\right) \rightarrow \cdots \\
\cdots & \rightarrow \sum_{|J|=p} \mathbb{C}^{\#(p-1)-\text { simplices in } D(x, B)} \longrightarrow \cdots
\end{aligned}
$$

This is cellular cochain complex for $D(x, B)$.
Thus $H^{*}\left(B, \theta_{B}\right) \cong H_{\text {sing }}^{*}(\perp(X, B) ; \mathbb{C})$.

Now we know

$$
H^{n-1}(D(x, B) ; \mathbb{C}) \cong H^{0}(X, K x+B)
$$

Thus, $D(X, B)$ is orientable

$$
\begin{aligned}
& \Leftrightarrow H^{0}(x, K x+B) \cong \mathbb{C} \\
& \Leftrightarrow K_{x}+B \sim 0
\end{aligned}
$$

Sketch Pf of Thy B. part (2).
Suppose index of $K x+B$ is m.
Let $q:\left(Y, B_{Y}\right) \rightarrow(X, B)$ be index 1 cover.
Then q is quasi-étale and $\operatorname{deg} m .\left(Y, B_{Y}\right) d t+\log c Y$ of cored 0 .
Galois group \mathbb{Z} / m acts on $\infty\left(Y, B_{Y}\right)$ and $K_{Y}+B_{Y} \sim 0$.

$$
\varnothing\left(Y, B_{Y}\right) /(\mathbb{Z} / m) \cong \varnothing(X, B)
$$

By Prop., $H^{n-1}\left(\mathscr{D}\left(Y, B_{Y}\right) ; \mathbb{Q}\right) \cong \mathbb{Q}$

$$
H^{n-1}(\otimes(X, B) ; \mathbb{Q})=0
$$

But $H^{n-1}(D(X, B) ; \mathbb{Q}) \cong H^{n-1}\left(\infty\left(Y, B_{Y}\right) ; \mathbb{Q}\right)^{\mathbb{Z} / m}=0$.
$\Rightarrow \mathbb{Z} / m$ acts nontrivially on $H^{n-1}\left(\doteq\left(Y, B_{Y}\right) ; \mathbb{Q}\right) \cong \mathbb{Q}$.
$\Rightarrow \mathbb{Z} / \mathrm{m}$ acts as ± 1 on \mathbb{Q}.
$\Rightarrow m$ is even.

Consider (\tilde{X}, \tilde{B}) be the quot. of $\left(Y, B_{Y}\right)$ by $\mathbb{Z} / \frac{m}{2}$

$$
\begin{aligned}
& \left(Y, B_{Y}\right) \xrightarrow{\frac{m}{2}: 1}(\tilde{X}, \tilde{B}) \xrightarrow{2: 1}(X, B) \\
& \oplus\left(Y, B_{Y}\right) \xrightarrow{\frac{m}{2}: 1} D(\tilde{X}, \tilde{B}) \xrightarrow{2: 1} \varnothing(X, B)
\end{aligned}
$$

(Property 4.) $(\tilde{X}, \widetilde{B})$ is a dIt $\log C Y$ pair of cored 0 .
such that $D(\tilde{X}, \tilde{B})$ is orientable.

$$
\left(H^{n-1}(D(\tilde{X}, \tilde{B}) ; \mathbb{Q})=H^{n-1}\left(D\left(Y, B_{Y}\right) ; \mathbb{Q}\right)^{\mathbb{Z} / \frac{m}{2}}=\mathbb{Q}\right)
$$

and $D(\tilde{X}, \tilde{B}) /(\mathbb{Z} / 2) \cong D(X, B)$.
We also get $K_{\tilde{x}}+\tilde{B} \sim 0$.
Let \tilde{f} s.t. $K_{x}+\tilde{B}=\operatorname{div}(\tilde{f})$.
Then $\operatorname{tr}(\tilde{f}) \in O_{x}$ is a trivializing section of

$$
\operatorname{tr}(K \tilde{x}+\tilde{B})=2\left(K_{x}+B\right)
$$

$\Rightarrow 2(K x+B) \sim 0$. Hence $m-2$.

